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Abstract: We report on the development of a ultrafast �ber laser-
microscope system for femtosecond photodisruption of biological targets. A
mode-locked Yb-�ber laser oscillator generates few-nJ pulses at 32.7 MHz
repetition rate, ampli�ed up to� 125 nJ at 1030 nm. Following dechirping
in a grating compressor,� 240 fs-long pulses are delivered to the sample
through a diffraction-limited microscope, which allows real-time imaging
and control. The laser can generate arbitrary pulse patterns, formed by two
acousto-optic modulators (AOM) controlled by a custom-developed �eld-
programmable gate array (FPGA) controller. This capability opens the route
to �ne optimization of the ablation processes and management of thermal
effects. Sample position, exposure time and imaging are allcomputerized.
The capability of the system to perform femtosecond photodisruption is
demonstrated through experiments on tissue and individualcells.
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1. Introduction

Ultrashort laser pulses are increasingly used in biological applications in recent years. In ad-
dition to their well-known use in nonlinear imaging [1, 2] and medical implant modi�cation
[3, 4], manipulation and dissection of individual cells in tissue or structures inside living cells
and other biological materials can be accomplished using femtosecond pulses with nanoscale
precision [5, 6]. This capability to achieve controlled ablation of cellular structures such as
a single axon [7] or dendritic spine [8], sub-cellular organelles such as mitochondria [9] or
cytoskeletal elements [10] is also known as nanosurgery. Inrecent years, various researches
have shown that the femtosecond photodisruption techniquerepresents a useful tool forin vivo
nanosurgical operations [11, 12]. To date, these experiments have relied on solid state lasers,
in particular Ti:sapphire lasers. While these lasers offer good technical performance, they are
large in size, costly and very complex. The oscillators operate at a �xed repetition rate around
80 MHz and ampli�ed systems are typically constrained to a few kHz. Control of the repeti-
tion rate for an oscillator requires a complex and expensivePockels cell. External ampli�cation
is even more complex and costly, rendering the master-oscillator power-ampli�er (MOPA) ar-
chitecture limited in its practical applicability. The necessary pulse durations and energies for
these applications are within the range of femtosecond �berlasers, which are more compact,
simpler to operate, and cost much less. Importantly, the repetition rate and the pulse train can be
controlled using acousto-optic modulators (AOM). Since the addition of an inline �ber ampli-
�er is straightforward, reductions in pulse energy during pulse picking can be compensated for.
In addition, the extremely low intensity noise of �ber lasers [13] should relate to the ablation
precision. Fiber lasers have been employed in multi-photonimaging [14, 15]. However, despite
the clearly high potential, �ber lasers have not been utilized in this area to date.

Here, we report, for the �rst time to our knowledge, the use ofa mode-locked �ber laser
for nanosurgery. The custom-developed system is based on a mode-locked Yb-�ber oscilla-
tor, seeding a multi-stage �ber ampli�er and incorporatinga �ber-coupled AOM for repetition
rate control, a diffraction grating compressor and a free-space AOM for pulse picking. This
enables complete control over the pulse pattern. The laser is coupled to a diffraction-limited
�uorescence microscope, with computerized imaging and sample positioning. The utility of
the system demonstrated through femtosecond photodisruption experiments.

2. Methods and results

The experimental setup, which comprises of the �ber laser, microscope and custom electronics,
is shown schematically in Fig. 1. The seed oscillator is an Yb-doped �ber laser, operating in the
all-normal-dispersion regime [16]. The choice of the mode-locked regime was dominated by



the desire to have an extremely robust system. This mode-locking regime results in relatively
longer and structured pulses. However, it is the ampli�er system that effectively determines
the pulse duration as a result of gain narrowing and residualhigher-order dispersion [17]. The
oscillator incorporates a 5 m-long section of single-mode �ber (SMF, of the type HI-1060) and
0.6 m-long Yb-doped �ber, followed by another 0.4 m of SMF. Net group velocity dispersion,
GVDnet, of the oscillator is calculated to be around 0.138 ps2. The gain �ber is pumped in core
with a pump diode delivering 310 mW of power through a 980/1030 nm wavelength division
multiplexer. Unidirectional operation is ensured using anin-line optical isolator. Mode-locking
is initiated and stabilized by nonlinear polarization evolution. Single pulse operation of the laser
output is veri�ed via long-range autocorrelation against bound pulse generation and RF spec-
tral measurements (with up to 12 GHz) against regular multiple pulsing. The in-line ampli�er
system comprises of a �ber stretcher, a �ber-pigtailed AOM,and three gain stages.
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Fig. 1. (a) Schematic of the experimental setup. FPGA: �eld programmable gate array;
AOM: acousto-optic modulator. (b) Schematic of the laser-�uorescence microscope optics.
(c) Schematic of the FPGA and analog electronic circuitry.

The �rst two stages are core-pumped. The �nal stage is cladding-pumped, where pump light
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Fig. 2. (a) Optical spectrum of the oscillator and ampli�er outputs. (b) Autocorrelation of
the ampli�ed pulses after dechirping. Inset: Close-in RF spectrum around the repetition
frequency. (c) Measured pulse train, exhibiting a complex pulse sequence as an example.
Apparent variations in the pulse heights due to digital sampling are not real.

is delivered through a signal-pump combiner. The lengths ofsingle-mode Yb-doped �bers used
for pre-ampli�er and ampli�er stages are 1.0 m and 0.5 m, respectively. The core diameters
are 6mm. First stage is pumped with 300 mW pump power in the forward direction and the
second stage is pumped with 120 mW in the backward direction.The �nal stage comprises of a
2 m-long Yb-doped �ber with 20mm core, 125mm cladding diameters and numerical aperture
of 0.08. The gain �ber is pumped in the forward direction witha pump diode laser producing
2 W centered around 976 nm. The beam extracted from the ampli�er using a �ber-coupled
collimator. The ampli�ed pulses are dechirped in a standarddiffraction grating compressor.

The oscillator mode-locks easily and remains mode-locked with the characteristic optical
spectrum shown in Fig. 2(a). Low-noise operation is veri�edby the 80 dB signal-to-sideband
suppression as observed through RF spectral measurements (inset of Fig. 2(b)). The oscillator
produces 3-ps-long chirped pulses with a bandwidth of 15 nm at a repetition rate of 32.7 MHz.
Output coupling from the cavity is achieved through a %20 output coupler, which delivers 32
mW of average power to the �ber stretcher, which consists of 40 m of single mode �ber (HI-
1060). Pulses are stretched to� 35 ps and then ampli�ed to 4.5 nJ energy per pulse in the
�rst ampli�er stage. After the �rst ampli�er stage, repetition rate of the pulses are reduced to
a desired repetition rate, which can be chosen between 1.02 to 32.7 MHz, depending on the
application. The role of the second ampli�er stage is to compensate for the power reduction
due to pulse picking in the AOM (the insertion loss is� 4 dB, in addition to losses due to pulse
elimination), producing approximately 110 mW of average power, virtually independent of the
pulse picking frequency in the AOM. The �nal power ampli�er functions as a power booster to
reach pulse energies necessary for ablation of the biological specimens, with a maximum pulse
energy of� 125 nJ, which corresponds to an average power of 500 mW at 4.08MHz repetition
rate. The laser system itself is not limited in average power(with a similar con�guration, we



were able to reach 50 W), but in pulse energy by nonlinear effects. It is also indirectly limited
in average power by the damage threshold of the microscope objectives. After dechirping in
the grating compressor, the compressed pulse duration is approximately 240 fs. The optical
spectrum of the chirped, ampli�ed pulses and autocorrelation after dechirping are shown in
Fig. 2(a) and (b), respectively. A second, free-space AOM ispresent for gating of the individual
pulses, enabling precise control of the exposure time of thelaser on the specimen as well as the
further reducing of the repetition rate down to 1 kHz or formation of pulse bursts (Fig. 2(c)).

The pulse picking is handled by an in-house developed FPGA design to pick pulses at two
AOMs positioned after the ampli�er stages. The FPGA is controlled through a user interface
software running on a PC. A portion of the laser signal is detected at a fast photodiode and the
output is fed to the FPGA as the clock source. In order to have higher temporal resolution in
picking out the optical pulses, a faster clock signal is needed. Thus, the clock signal derived
from the repetition rate of the laser, is multiplied by 8 at the digital clock manager inside the
FPGA to� 262 MHz. A one-time-only delay adjustment in the FPGA allowsthe new clock sig-
nal to be fully synchronized to arriving optical pulses at the AOMs. The FPGA starts counting
the pulses and sends gating signal to the AOM drivers when a pulse is to be picked. As well
as picking out the pulses continuously, the system is capable of working in arbitrary picking
mode. The user is able to pick and drop any number of pulses through the software interface,
which can be con�gured to produce a prede�ned pulse sequenceupon the press of a button.
There are virtually no limitations on the pulse sequences that can be de�ned.

For real-time imaging of the biological sample, a customized epi-�uorescent microscope
(Nikon Ti-U) is used. A telescope is used to expand the beam, which is directed to the objec-
tive with a dichroic mirror housed in an extra turret. The dichroic mirror is highly re�ective
at the laser wavelength, while transmitting visible light and �uorescence excitation (Fig.1).
Sample positioning is accomplished via a 2D micropositioning stage (with a precision of�
1 mm) and a 3D piezo stage with� 20 nm precision. For most applications, the microposi-
tioning stage alone provides suf�cient resolution. Visualization is based on �uorescent and
phase-contrast imaging. A 60X,1.2-NA objective and a 100X,1.3-NA objective are used in-
terchangeably for sub-cellular ablation and a 20X, 0.4-NA,phase-contrast objective is used
for multicellular/tissue-level ablation, on both cases, together with a high-sensitivity EMCCD
camera for imaging. All major aspects of the laser-microscope system, including control of the
FPGA system for pulse picking and gating, positioning of thesample, control of the camera and
image acquisition are controlled via a computer for nearly completely hands-free operation. A
computer joystick allows ease of use for positioning.

In order to demonstrate the system's capability to achieve femtosecond photodisruption of
biological samples, 240-fs, 7-nJ pulses at 4.08 MHz were used to make cuts on frozen sections
of mouse gastrocnemius muscle. The beam was focused to a spotsize of� 2:2 mm using the
20X objective; the telescope is adjusted to �ll the apertureof the 60X and 100X objectives
completely, resulting in under�lling of the 20X objective.5 parallel, linear cuts were made, as
shown in Fig. 3(b). The line widths were measured to be 2� 2:5 mm, consistent with the spot
size. Next, femtosecond photodisruption is performed on chemically �xed Saos-2 cells using
the 60X objective. In this mode of operation, sub-micron features are obtained (Fig. 3(d)). The
system's capability of targeting single organelle of live Saos-2 cells were examined using the
100X objective. We ablated part of a single mitochondrion (stained with Mitotracker Red 580,
Invitrogen) with 2 nJ pulses (Fig. 3(e),(f)). We have ruled against photobleaching, by applying
FRAP (�uorescence recovery after photobleach) several hours after the operation. Continuous
monitoring of the cell during this time showed that the cell viability was not affected. Finally,
we have utilized our system to perform axotomy on differentiated neuroendocrine PC12 cells.
An axon of a PC12 cell was damaged with the laser beam with 8 nJ pulse energy at 32.7 MHz



repetition rate (Fig. 3(g),(h)). The procedure interrupted the viability of the cell and after a few
minutes wallerian degeneration came up, with prominence ofthe bead-like structures.

Fig. 3. Tissue slice (mouse gastrocnemius muscle) (a) before and (b)after ablation; 4.08
MHz, 240-fs, 7-nJ. Fixed Saos-2 cells (c) before and (d) after sub-cellular surgery; 4.08
MHz, 240-fs, 7 nJ. (e) Before and (f) after ablation of single mitochondrion stained with
Mitotracker Red 580; 4.08 MHz, 240-fs, 2 nJ. (g) and (h) Before and after femtosecond
axotomy; 32.7 MHz, 240-fs, 8 nJ. White arrow in (h) indicates the micro-damage.

3. Conclusion

In conclusion, we have demonstrated the use of a custom-built �ber laser-based microscope
system for nanosurgery and tissue ablation experiments. Our system constitutes a novel and
highly practical instrumentation for ultrafast photodisruption, making maximal use of the ad-
vantages offered by �ber technology. The laser system is extremely robust. Through the use
of custom FPGA electronics acting through �ber-coupled AOMs, we are able to generate pulse
sequence with no limitations (apart from the maximum repetition rate, which is that of the oscil-
lator), while the MOPA architecture ensures that the individual pulse energy remains the same.
The highly computerized operation of the system paves the way towards automated execution
of a sequence of operations on a number of cells. These advantages are obtained at a fraction
of the cost of a Ti:sapphire laser, which has traditionally been the system of choice for these
experiments. We expect the demonstration of a highly practical and low-cost system will aid
the proliferation of ultrafast laser-based ablation experiments in biological sciences.
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