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Controllable Raman-like nonlinearities from
nonstationary, cascaded quadratic processes
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We show that useful noninstantaneous, nonlinear phase shifts can be obtained from cascaded quadratic pro-
cesses in the presence of group-velocity mismatch. The two-field nature of the process permits responses that
can be effectively advanced or retarded in time with respect to one of the fields. There is an analogy to a
generalized Raman-scattering effect, permitting both red and blueshifts of short pulses. We expect this ca-
pability to have many applications in short-pulse generation and propagation, such as the compensation of
Raman-induced effects and high-quality pulse compression, which we discuss. © 2004 Optical Society of
America
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1. INTRODUCTION
In the past decade, there has been much interest in the
nonlinear phase shifts produced by the cascaded interac-
tions of two or three waves in quadratic @x (2)# nonlinear
media. Large nonlinear phase shifts of controllable sign
can be generated, and numerous applications of such a
capability1 can be envisioned. The prototypical qua-
dratic process is second-harmonic generation. During
the propagation of a fundamental-frequency (FF) field
along with its second harmonic (SH), the FF accumulates
a nonlinear phase shift (FNL) if the process is not phase
matched. With long pulses (nanosecond duration in
practice) the FF and SH fields overlap temporally despite
their different group velocities. In this so-called station-
ary limit, an effective Kerr nonlinearity is obtained (ex-
cept at high intensity, when the fundamental field is de-
pleted), and this can be a surrogate for the bound-
electronic cubic @x (3)# nonlinearity.2 The cascade
nonlinear phase shift can be thought of as arising from an
effective nonlinear refractive index, i.e., the real part of
an effective susceptibility. The residual SHG that occurs
in the phase-mismatch process can similarly be consid-
ered the analog of two-photon absorption (the correspond-
ing imaginary part of the effective susceptibility).

The use of cascaded quadratic processes with ul-
trashort pulses is complicated substantially by the group-
velocity mismatch (GVM) between the FF and SH
fields.3,4 GVM causes the fields to move apart in time,
which reduces their coupling and thus the magnitude of
the cascade effects. In addition, the temporal profile of
the nonlinear phase shift becomes distorted. Deviations
of FNL(t) from the pulse intensity profile hamper or pre-
clude applications that involve solitonlike pulse shaping.
The solution to this problem amounts to recovery of the
stationary regime: For a given value of the GVM, the
phase mismatch is increased so that the cycles of conver-
sion and backconversion that generate the nonlinear
phase shift occur before the pulses move apart from each
other in time. Liu et al. and Wise et al. showed that ac-
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ceptable phase-shift quality can be obtained if at least two
conversion cycles occur per characteristic GVM length
LGVM 5 0.6ct0 /(ng,1 2 ng,2), which implies Dk
. 4p/LGVM .5,6 Here, c is the speed of light in vacuum,
t0 is the FWHM of the pulse, and ng,1 and ng,2 are the
group refractive indices for the FF and SH, respectively.
In the limit of large phase mismatch an exact replica of a
cubic nonlinearity is asymptotically obtained.2 The dis-
advantage of working with large phase mismatch is re-
duced magnitude of the nonlinear phase shift. GVM
thus places a strong constraint on applications of cascade
phase shifts. As one example, increasing GVM reduces
the fraction of launched pulse energy that evolves into a
soliton eventually to zero.7 To date, applications of cas-
cade phase shifts with femtosecond pulses5,8–10 have all
been demonstrated under stationary conditions. Ap-
proaching the stationary boundary, GVM coupled with
self-phase modulation has been observed to broaden
asymmetrically the pulse spectrum.5,11

The nonlinear refraction experienced by an ultrashort
pulse in a cubic nonlinear medium arises predominantly
from bound-electronic and nuclear (i.e., Raman) contribu-
tions to the nonlinear response. Here, we show that cas-
cade phase shifts produced under nonstationary condi-
tions mimic the Raman response, with some remarkable
properties. Frequency shifts of controllable sign and
magnitude can be impressed on short pulses. These ef-
fective Stokes and anti-Stokes Raman processes complete
the analogy between cascade nonlinearities and true cu-
bic nonlinearities while maintaining the new degree of
freedom provided by the quadratic interaction—control of
the process through the phase mismatch. An interesting
feature of the nonstationary cascade process is that it pro-
vides a controllable, noninstantaneous (and therefore
nonlocal) nonlinearity. That the GVM alters the qua-
dratic processes and produces deviations from a Kerr non-
linearity is well-known.4 However, to date these effects
have been perceived as distortions to be avoided. Just as
the ability to control the sign and magnitude of an effec-
tive nonlinear index has enabled a new class of applica-
2004 Optical Society of America
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tions,1,6 controllable Raman-like processes can be ex-
pected to create substantial new opportunities. We can
think of cascade nonlinear processes with short pulses as
dividing naturally into two classes, separated by the cri-
terion for obtaining nonlinear phase shifts that mimic
those of purely electronic origin. In this view, half of the
possibilities have yet to be explored. Some examples will
be discussed.

2. ANALYTICAL APPROACH
The Kerr-like nonlinearity that arises from the x (2):x (2)

process in the stationary limit can be understood qualita-
tively as follows. A small fraction of the FF is converted
to the SH, which accumulates a phase difference before it
is backconverted. The nonlinear phase shift impressed
on the FF is delayed by one full cycle of conversion and
backconversion. However, as long as the SH is not dis-
placed temporally from the FF, the phase shift on the FF
will be proportional to its intensity profile (Fig. 1). With
short pulses, the GVM becomes important if the fields
separate by approximately the pulse duration before a
cycle of conversion and backconversion is complete. [We
assume that the effect of the difference between the
group-velocity dispersions (GVD) of the FF and the SH is
negligible; in practice, it typically is much weaker than
the interpulse GVM. This will be discussed quantita-
tively below.] Thus, after one cycle of conversion and
backconversion, the intensity profile of the SH field is re-
tarded or advanced with respect to that of the FF, depend-
ing on the sign of the GVM. The corresponding delay of
the nonlinear phase is slightly smaller or larger than one
full conversion cycle. As a result, an effectively advanced
or retarded phase shift is accumulated by the FF. The
corresponding effect in the spectral domain is a frequency
shift toward the blue or the red. Such frequency shifts
have been predicted through numerical calculations.4,7

The propagation of the FF and the SH are governed by
coupled equations within the slowly-varying-envelope
approximation.12 We neglect self- and cross-phase modu-
lation due to x (3), consider only the temporal dimension,
and assume conditions for type I second-harmonic genera-
tion, but the results can easily be generalized:
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Here a1 and a2 are the normalized FF and SH field am-
plitudes. Time is normalized to the initial pulse duration
t 5 t/t0 and the scaled propagation coordinate is j
5 z/LGVM . Here, d j 5 LGVM /LDS, j , where LDS, j
5 0.322t0

2/GVD(v j) are the dispersion lengths with j
5 1, 2. The parameter b 5 DkLGVM where Dk 5 k2v

2 2kv is the normalized FF–SH wave vector mismatch.
Consider the simple but common case when only FF

light is incident on the quadratic medium. In the limit of
large phase mismatch, conversion and backconversion oc-
cur rapidly and most of the energy resides in the FF at all
times. A relation between the FF and the SH amplitudes
can be derived as an expansion in powers of b.2,13 By
eliminating a2 in Eq. (2) and keeping terms up to order
1/b3, an equation of motion for the FF field can be de-
rived:

i
]a1

]j
2

d1

2

]2a1

]t 2 2
1

b
ua1u2a1 2 2i

1

b2 ua1u2
]a1

]t

1
1

b2 ~d1 2 d2!ua1u2
]2a1

]t 2 2
d2

b2 a1* S ]a1

]t
D 2

1 OS 1

ubu3D 5 0. (3)

The first three terms constitute a nonlinear Schrö-
dinger equation (NLSE), which is generalized by the
fourth and the fifth terms that describe the effects of the
GVM, and the mismatch of the GVD of the FF and SH,
respectively. The final term is negligible (at order 1/b2)
since it is proportional to the square of the first derivative
of the field envelope (a small quantity in the slowly-
varying-envelope approximation). In addition, it is even
in time for well-behaved fields @a1(t)#, hence cannot con-
tribute to the frequency-shifting process. We neglect the
GVD mismatch since its effect is much smaller than in-
terpulse GVM for typical nonlinear media under the as-
sumed conditions of small conversion to the SH. In that
case, Eq. (3) reduces to
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We note that Eq. (4) resembles the Chen–Liu–Lee
equation, which is integrable.14 The difference is the
presence of a cubic nonlinear term. It can be shown that
Eq. (4) reduces to the Chen–Liu–Lee equation
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with the substitution

a1~j, t! 5 c0 exp@i~c1j 1 c2t !#q~j, t!, (6)

where uc0u2 5 b2Ad1/8, c1 5 d1b2/8, and c2 5 b/2, fol-
lowed by the coordinate transformation

T 5 2A2/d1t 2 bAd1/2j,

Z 5 j. (7)

Hence, Eq. (4) is integrable as well. We note that the
Chen–Liu–Lee equation is further related to the well-
known, integrable, derivative nonlinear Schrödinger
equation through a gauge-invariant transformation.15

To further understand the effects of the lowest-order
correction from GVM in Eq. (4), we can compare it to the
equation governing the propagation of a single field enve-
lope a1 under similar approximations to Eqs. (1) and (2),
but for a Kerr-nonlinear material with finite Raman-
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response time TR
16:

(8)

Here g 5 n2v0 /(cpw2) for a Gaussian beam with of
frequency v0 and waist w. Comparing Eq. (8) with Eq.
(4), we see that they are similar but with the Raman term
of Eq. (8) replaced by TR

effua1 u2]a1 /]t, where TR
eff [ 22i/b.

While the correspondence is not exact since the functional
dependence is different (;a1]ua1u2/]t for Raman scatter-
ing versus ;ua1u2]a1 /]t for the cascaded process), some
qualitative understanding can be gained from considering
the effective cascaded response with TR

eff ; i/b: First, the
cascaded correction is imaginary and hence does not con-
tribute directly to the phase (unlike the Raman response).
Rather, it alters the field envelope. The envelope change
subsequently couples to the phase profile through the re-
maining terms of Eq. (4), so the frequency shift occurs
through a higher-order process. Second, TR

eff saturates
with 1/b ; 1/Dk(l), unlike the Raman response which
does not depend strongly on wavelength. This saturation
will be explored in greater detail in Section 3. Note that
the effective response for the cascaded process can be ap-
proximately two orders of magnitude or more greater
than that of Raman scattering, so that significant fre-
quency shifting is possible in centimeters of quadratic
material (versus meters of fiber with Raman).

For a qualitative understanding of the effect of the
GVM term, we decompose the field a1(j, t) in Eq. (4) into
its amplitude and phase with the substitution a1(j, t)
5 u(j, t)exp@if(j, t)#, where u(j, t) and f(j, t) are real
functions. The evolution of the amplitude and the phase
is then given by
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For the sake of simplicity, we concentrate on the non-
linear terms and ignore the dispersion, which amounts to
neglecting the terms with higher-order time derivatives.
With this simplification, we obtain
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If we assume b is large, u(j, t) and f(j, t) can be cal-
culated by expanding in powers of 1/b, similar to the pro-
cedure used to obtain Eq. (4). Keeping terms up to order
1/b2, Eq. (10) shows that u(j, t) 5 u(t) 1 O(1/b2), i.e.,
that the field amplitude is approximately unchanged.
Thus, integration of Eq. (11) yields
f~j, t! 5 2
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Substitution of this relation back into Eq. (11) gives
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The first term on the right represents the Kerr-like non-
linear phase shift and the second term corresponds to the
noninstantaneous nonlinear response due to large GVM.

The relation in Eq. (13) provides a valid description of
the phase evolution only in its early stages before the field
amplitude is modified significantly, and in the absence of
dispersion. Within these approximations, the effect of
the GVM on the nonlinear phase shift can be illustrated
for a given pulse shape: a1(0, t) 5 sech(t). Integration
of Eq. (13) yields
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where f0 is an integration constant. The temporal
asymmetry of the GVM contribution shifts the peak of the
nonlinear phase shift.

Likewise, by Fourier transforming to the frequency do-
main, the contributions of the Kerr-like and the GVM
terms in Eq. (4) can be calculated for the pulse shape to be
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which has a bipolar shape. Positive frequency compo-
nents are attenuated and negative frequencies are ampli-
fied, or vice versa, depending on the sign of the phase-
mismatch-to-GVM ratio. This result is expected to hold
in general for any smooth, single-peaked pulse shape for
which a1(0, t) → 0 for utu → `. Such a frequency shift
is expected from the GVM term, which has an odd-order
time derivative.

3. NUMERICAL ANALYSIS
Although the approximate one-field equation [Eq. (4)] is
useful for a qualitative understanding, it is necessary to
consider the coupled equations [Eqs. (1) and (2)] for a
quantitative description. To this end, we numerically
solve a version of Eqs. (1) and (2) that has been general-
ized to include the self- and cross-phase modulation terms
that are due to the cubic nonlinearity. We use a different
field normalization here to facilitate comparison with ex-
perimental parameters:
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Here the FF and SH envelopes (A1 and A2 , respec-
tively) are in units of the initial peak FF field A0 (related
to the initial peak FF intensity by I0 5 Ae/muA0u2/2), and
n2 is the Kerr-nonlinear index. The cubic nonlinear
length characterizing the pulse propagation is LNL, j
5 c/v jn2I0 (the length over which the accumulated non-
linear phase shift is 1) for frequency v j with j 5 1, 2.
The propagation coordinate z is normalized to the qua-
dratic nonlinear length ZI 5 nl1/2pdeff A0 which charac-
terizes the strength of the nonlinear coupling. Variable
deff is the effective quadratic nonlinear coefficient. Time
t, LDS, j , and LGVM are defined as for Eqs. (1) and (2).

Equations (16) and (17) are solved using a symmetric
split-step beam propagation method.17 The simulations
assume typical conditions for femtosecond pulses in qua-
dratic nonlinear crystals. As an example, we calculate
the propagation of 120-fs pulses with a peak intensity of
50 GW/cm2 in a 10-cm-long quadratic medium. The
launched pulse shape is chosen to be Gaussian with cen-
ter wavelength 790 nm. The quadratic medium used is
barium metaborate (Ba2BO4 , or BBO) for which the ma-
terial parameters are n 5 1.63, deff 5 1.82 pm/V, n2
5 3.2 3 10216 cm2/W, GVM 5 2186 fs/mm, the FF (SH)
GVD 5 70 (190) fs2/mm, and the FF (SH) third-order
dispersion 5 50 (81) fs3/mm. Note that the true cubic
nonlinearity (n2) is included in the calculations. Two-
photon absorption is neglected since it is small for BBO at
790 nm. The phase mismatch is set to be Dk
5 5p/mm, corresponding to a self-defocusing nonlinear-
ity and a magnitude that is about half the minimum
value to obtain a Kerr-like phase shift. This particular
set of conditions, except for the crystal length, is chosen to
correspond to experiments that are described below. As
expected, the spectrum of the pulse shifts to higher fre-
quencies as it propagates through the quadratic medium.
The evolution of the spectrum is shown in Fig. 2(a). Ini-
tially, the frequency shift increases linearly with propaga-
tion distance, but eventually the process saturates [Fig.
2(b)]. The spectrum of the SH field shifts opposite from
that of the FF (i.e., to lower frequencies) prior to satura-
tion. This saturation is expected, since the effective re-
sponse of the cascaded process decreases (or is distorted)

Fig. 1. Illustration of the cascaded quadratic processes under
phase-mismatch conditions. The FF is partially converted to
the SH and then backconverted. Dashed (solid) curves are for
the case of zero (nonzero) GVM.
with increasing frequency shift. For this choice of pulse
parameters and phase mismatch, the saturation begins
beyond 3 cm, which is close to the maximum length of
available BBO crystals. The cubic electronic nonlinear-
ity of the quadratic material is included here for complete
correspondence with experimental parameters; however,
the close agreement in Fig. 2(b) between the saturation
trend with and without n2 indicates the dominance of the
quadratic process in the frequency-shifting dynamics. In
Fig. 2(b), the presence of cubic nonlinearity slightly re-
duces the resulting frequency shift, as expected as a re-
sult of its self-focusing phase. One might expect the ma-
terial’s Raman response to be relevant to the frequency-
shifting dynamics studied here, but the Raman response
of BBO with ;100-fs pulses is small compared with the
cascaded response. In comparison to Raman, the cubic
electronic nonlinearity included in Fig. 2(b) is a larger ef-
fect, even though it alters the frequency-shifting process
indirectly through the nonlinear phase.

The pulse propagation is dominated by an interplay of
GVD and the effective nonlinearity from the cascaded
process in the form of solitonlike dynamics. In the time
domain, the pulse undergoes compression since the en-
ergy is more than the amount needed to balance the dis-
persive effects. The intensity profiles before the onset of
saturation and at the exit face of the crystal are plotted in
Fig. 3 along with those of the launched pulse. The FF
undergoes a steady compression accompanied by energy
loss to the SH: At z 5 12 mm, its FWHM is 110 fs with
64% of the pulse energy remaining in the FF. With
propagation, the pulse shape becomes slightly asymmetri-
cal. The asymmetrical structure develops into a second-
ary pulse in the final stages of propagation that corre-
sponds to the secondary structure of the spectrum [Fig.
2(a)]. At z 5 100 mm, the FWHM of the main peak is re-
duced to 40 fs while ;36% of the launched energy is re-
tained in the FF. The temporal profiles are displaced
since the pulse experiences different group velocities as
its central frequency changes.

Fig. 2. (a) Evolution of the spectrum along the propagation di-
rection. Shift is in units of the initial spectral FWHM, ;3.7
THz. The scale bar shows spectral intensity in arbitrary units.
(b) Weighted average frequency shift as a function of propagation
distance. Dashed curve indicates fit to region of linear shift.
Dashed–dotted curve shows similar results in the absence of x (3)

(n2 5 0).
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A similar picture emerges for the total frequency shift
for fixed propagation distance and varying phase mis-
match. The magnitude of the nonlinear phase, and
hence the frequency shift, is proportional to 1/Dk before it
saturates. Loss to SH conversion increases with decreas-
ing uDku, so there exists a trade-off between the magni-
tude of the frequency shift and loss. We define a figure of

Fig. 3. Intensity profiles of the FF at z 5 0 mm (dashed–dotted
curve), z 5 12 mm (solid curve), z 5 100 mm (dashed curve).
For the launched pulse LDS,1 5 74 mm.

Fig. 4. Frequency shift (crosses) and figure of merit (circles) as a
function of phase mismatch. Similarly to Fig. 2, frequency shift
is measured in units of the initial FWHM (here ;4.4 THz).
Note that GVD is chosen to be normal (anomalous) for Dk . 0
(Dk , 0) to support solitonlike pulses.

Fig. 5. Phase impressed on the FF for zero (solid curve), positive
(dashed curve), and negative (dashed–dotted curve) GVM.
merit for the shifting process as the ratio of frequency
shift to energy content in the SH field, which attains a
maximum for phase-mismatch values slightly below those
of the minimum for obtaining Kerr-like, nonlinear phase
shifts (Fig. 4). This is demonstrated in Fig. 4, which
shows simulations of 100-fs, 200-pJ pulses with center
wavelength 1550 nm (and peak intensity ;5 GW/cm2).
The material parameters used correspond to those of the
quadratic material periodically poled lithium niobate
(PPLN): n 5 2.14, deff 5 16.5 pm/V, n2 5 3.2
3 10215 cm2/W, GVM 5 2370 fs/mm, and the FF (SH)
GVD 5 100 (400) fs2/mm. Under these conditions, the
stationary boundary for Kerr-like phase shifts corre-
sponds to uDku * 25p/mm. Notice that much larger fre-
quency shifts can be generated closer to phase matching,
but with larger SH conversion.

The noninstantaneous nature of the cascaded qua-
dratic process with significant walk-off between the FF
and the SH is demonstrated by the nonlinear phase shift
imposed on the FF. Simulations confirm the aforemen-
tioned expectations: Effectively retarded or advanced
phase shifts are imposed on the FF depending on the sign
of the GVM (Fig. 5).

4. EXPERIMENTAL OBSERVATION OF THE
FREQUENCY SHIFT
Experiments were performed with 120-fs, 0.6-mJ pulses
centered at 790 nm and generated by a Ti:sapphire regen-
erative amplifier. The launched pulse shape was ap-
proximately Gaussian with a clean spatial profile, and the
peak intensity was estimated to be 50 GW/cm2. A 17-
mm-long piece of BBO served as the quadratic medium.
The GVM length was LGVM 5 0.38 mm, for which the cri-
terion for a Kerr-like phase shift implies Dk
. 10.4p/mm. Both blue and redshifts are experimen-
tally available through positive and negative phase mis-
match, respectively. However, redshifts occur with self-
focusing nonlinearity, which limits the peak intensity
available without continuum generation and crystal dam-
age. Consequently, we focus here on blueshifts.

Fig. 6. Experimental (solid curves) and simulated (dashed
curves) spectra for phase mismatches of 5p/mm and 36p/mm.
The latter serves as control. Inset: experimental (symbols)
and calculated (solid curve) frequency shift for different values of
phase mismatch. As in Fig. 2, frequency shift is measured in
units of the initial FWHM, ;3.7 THz.
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Increasing frequency shift of the FF was observed with
decreasing phase mismatch (Fig. 6). The inset of Fig. 6
shows the spectral shift versus phase mismatch for self-
defocusing phase shifts, and the main figure shows ex-
ample spectra. The data presented for Dk 5 36p/mm
serve as a control experiment: At such a large phase
mismatch, the cascade nonlinear phase and the Kerr non-
linearity are negligible and the spectrum is indistinguish-
able from the spectrum of the launched pulses (not
shown). The temporal profile of the pulse did not change
significantly in these experiments. The experimental re-
sults are compared with the results of numerical simula-
tions which contained no free parameters and were based
on experimental conditions. In Fig. 6, the calculated
spectrum of the unshifted pulse (36 p/mm) is normalized
so that it contains the same power as the measured, un-
shifted spectrum and all other traces have the same rela-
tive scaling, so that the units of all the given spectra are
the same. With this in mind, there is excellent agree-
ment between the measured spectra and the simulations.
In particular, the shift increases greatly from Dk
5 19p/mm to Dk 5 5p/mm. The latter is the phase
mismatch for which the ratio of the spectral shift to SH
conversion should peak. The dependence of the fre-
quency shift on the phase mismatch, as summarized by
the inset of Fig. 6, agrees qualitatively with the results of
Fig. 4; however, the phase mismatch corresponding to
maximum ratio of spectral-shift to SH conversion is dif-
ferent from that in Fig. 4 as a consequence of different
physical parameters in the experiment.

5. APPLICATIONS
We have shown that cascaded quadratic processes under
phase-mismatch conditions and in the presence of signifi-
cant GVM (typical conditions with femtosecond-duration
pulses) result in an effectively noninstantaneous cubic
nonlinearity. The response time is controllable by appro-
priate choice of the phase mismatch. In addition to pro-
viding an intuitive picture for the effect of phase mis-
match on the propagation of femtosecond pulses, this
nonlinear process offers some unique features. The non-
local nature of the Raman-like cascade nonlinearity is in-
teresting in its own right. Nonlocality of the cubic non-
linearity has been shown to arrest self-focusing collapse
and to stabilize solitons, for example.18,19 The nonlocal
nature of the cascade process under nonstationary condi-
tions can be controlled or tailored to specific situations
through the phase mismatch.

Many applications of a controllable, effective Raman
process can be envisioned. Perhaps the most obvious one
is the cancellation of the Raman shift that a short pulse
accumulates as it propagates in optical fiber. For ex-
ample, in telecommunication systems with bit rates above
;20 Gbit/s, the pulse duration is short enough that tim-
ing jitter is dominated by jitter arising from Raman-
induced frequency shifts.20

In high-energy, short-pulse fiber amplifiers, the nonlin-
ear phase shift can be controlled reasonably well by the
technique of chirped-pulse amplification, and as a result
an equally important limitation to pulse energy is stimu-
lated Raman scattering.21 The redshifts produced by Ra-
man scattering can be compensated for by blueshifting
the pulses prior to, or following, propagation in fiber. As
an example, we calculate the precompensation of the
Raman-induced redshift of a 100-fs, transform-limited
pulse centered at 1550 nm in standard single-mode fiber
(modal area of 80 mm2 and GVD of 223 ps2/km). The
pulse energy is 1 nJ. The quadratic medium is a 4-cm-
long waveguide written in PPLN. The modal area of the
waveguide is 40 mm2 and the GVD for the FF is 100
ps2/km.22 The phase mismatch is set to Dk 5 20p/mm.
The pulse is first blueshifted in the PPLN waveguide and
then propagates in the fiber. These calculations indicate
that the central wavelength can be kept at 1550 nm fol-
lowing propagation in up to 50 cm of fiber. If no precom-
pensation is utilized, the pulse is redshifted to 1800 nm
(Fig. 7). This result nicely complements the previously
established conclusion that the cascade nonlinearity can
be used to compensate for the nonlinear phase shift pro-
duced by the electronic Kerr nonlinearity under similar
conditions.23

Other potential applications include devices that con-
vert peak power to frequency shift and can be used to
switch wavelength channels or intensity discrimination
with the addition of a frequency filter.24

We consider the application to pulse compression in
some detail. For pulse energies in excess of 1 mJ, meth-
ods based on cubic nonlinearity for the generation of extra
bandwidth cannot be used because of the limitations of
excessive nonlinearity in single-mode waveguides and
material damage through self-focusing for unguided ge-
ometries. Self-defocusing nonlinearities in quadratic
media address these difficulties.5,25 The generalization
of this approach to include frequency shifts as described
here enables us to implement an analog of Raman–soliton
compression26: high-order solitons are formed, produc-
ing a compressed primary pulse that undergoes a continu-
ous self-frequency shift. An advantage of this approach
is that the pedestal commonly produced by Raman–
soliton compression consists mainly of unshifted fre-
quency components. These components can be elimi-
nated with a frequency filter to yield a pedestal-free
pulse.

Numerical simulations for realistic parameters demon-
strate the utility of this approach: 100-fs, 0.6-nJ pulses

Fig. 7. Pulse spectrum after propagation in fiber without pre-
compensation (dashed–dotted curve) and after cascade precom-
pensation stage (dashed curve) and subsequent propagation
through fiber (solid curve). Dots indicate the launched pulse
spectrum.
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with Dk 5 50p/mm compress to 20 fs upon propagation
through a 6-cm-long waveguide in PPLN (Fig. 8). The
pulse quality Qc , defined as the ratio of energy contained
within the FWHM of the pulse to that of the initial pulse,
is calculated to be 0.65. The unshifted components can
be filtered out to produce a longer (38 fs) but much
cleaner Qc 5 0.91 pulse. Compression in a second 2.5-
cm-long PPLN crystal generates a 15-fs pulse with virtu-
ally no additional degradation in pulse quality, Qc
5 0.90. The resulting pulse after two stages of compres-
sion contains ;50% of the launched pulse energy. Simi-
larly, calculations indicate that compression factors of up
to 3 should be attainable with 1-mJ pulses in a bulk BBO
crystal at 800 nm, and experiments are underway to
verify this compression. In addition to the high pulse
quality, a practical advantage of this approach is that
larger nonlinear phase shifts can be produced at the
smaller phase mismatches needed in comparison with
compression in quadratic media under nearly stationary
conditions.

6. CONCLUSION
In summary, we have demonstrated a new capability of
cascaded quadratic processes under phase-mismatched
conditions: Effectively retarded or advanced nonlinear
phase shifts can be impressed on a pulse in the presence
of significant GVM between the FF and SH frequencies.
The frequency-domain manifestation of this noninstanta-
neous nonlinear response is red or blueshifts of the pulse
spectrum. The direction and the magnitude of the fre-
quency shift is controllable by the choice of the phase mis-
match. Just as effectively instantaneous phase shifts
from cascaded processes are analogous to bound-
electronic @x (3)# nonlinearities for negligible GVM, these
noninstantaneous phase shifts in the presence of strong
GVM are analogous to nuclear (Raman-induced) nonlin-
earities.

We expect the unique features of these processes to find
many applications. Here, we numerically demonstrated
compensation of Raman-induced frequency shifts and

Fig. 8. Temporal profile of compressed pulses before (dashed
curve) and after spectral filtering (solid curve) of the unshifted
frequencies. Inset: compressed pulse spectrum before (dashed
curve) and after filtering (solid curve). Dashed–dotted curves
indicate the launched temporal profile–spectrum.
high-quality pulse compression assuming typical condi-
tions for femtosecond pulses in common quadratic nonlin-
ear media. More generally, however, spectral shifts from
cascaded quadratic processes should be applicable to all
processes involving Raman-induced frequency shifts, but
with the added freedom of sign and magnitude control.
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